Activating Mutations in Protein Tyrosine Phosphatase Ptpn11 (Shp2) Enhance Reactive Oxygen Species Production That Contributes to Myeloproliferative Disorder
نویسندگان
چکیده
Gain of function (GOF) mutations in protein tyrosine phosphatase Ptpn11 have been identified in childhood leukemias, and these mutations are sufficient to drive the development of myeloproliferative disorder and malignant leukemias in mice. However, the molecular mechanisms by which Ptpn11 mutations induce these malignancies are not completely understood. Here we report that Ptpn11 GOF mutations cause cytokine hypersensitivity in hematopoietic cells partly by enhancing the production of reactive oxygen species (ROS). GOF mutations D61G or E76K in Ptpn11 increased ROS levels in myeloid progenitors but not in hematopoietic stem cells. Increased ROS enhanced cellular responses to cytokines by promoting cytokine signaling. Treatment with an antioxidant partially corrected cytokine hypersensitivity in Ptpn11 mutant progenitors. Further analyses demonstrated that Ptpn11 mutations increased mitochondrial aerobic metabolism by interacting with a novel substrate in the mitochondria. This study provides new insights into the pathogenic effects of GOF mutations of Ptpn11 and implies that antioxidants may have a therapeutic benefit for the leukemic patients with these mutations.
منابع مشابه
Redox Regulation of a Gain-of-Function Mutation (N308D) in SHP2 Noonan Syndrome
SHP2 (Src homology 2 domain-containing protein tyrosine phosphatase 2; PTPN11) is a ubiquitous multidomain, nonreceptor protein tyrosine phosphatase (PTP) that plays an important role in diseases such as cancer, diabetes, and Noonan syndrome (NS). NS is one of the most common genetic disorders associated with congenital heart disease, and approximately half of the patients with Noonan syndrome ...
متن کاملNon–lineage/stage-restricted effects of a gain-of-function mutation in tyrosine phosphatase Ptpn11 (Shp2) on malignant transformation of hematopoietic cells
Activating mutations in protein tyrosine phosphatase 11 (Ptpn11) have been identified in childhood acute leukemias, in addition to juvenile myelomonocytic leukemia (JMML), which is a myeloproliferative disorder (MPD). It is not clear whether activating mutations of this phosphatase play a causal role in the pathogenesis of acute leukemias. If so, the cell origin of leukemia-initiating stem cell...
متن کاملProtein tyrosine phosphatase Shp2 (Ptpn11) plays an important role in maintenance of chromosome stability.
Both activating and inactivating mutations in protein tyrosine phosphatase Ptpn11 (encoding Shp2) are associated with tumorigenesis. However, the underlying mechanisms remain unclear. Here, we show that Shp2 plays an important role in mitosis, dysregulation of which results in chromosome instability and cancer predisposition. Depletion of Shp2 compromised the mitotic checkpoint. Shp2-depleted c...
متن کاملActivating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia.
The SH2 domain-containing protein-tyrosine phosphatase PTPN11 (Shp2) is required for normal development and is an essential component of signaling pathways initiated by growth factors, cytokines, and extracellular matrix. In many of these pathways, Shp2 acts upstream of Ras. About 50% of patients with Noonan syndrome have germ-line PTPN11 gain of function mutations. Associations between Noonan ...
متن کاملNoonan syndrome cardiac defects are caused by PTPN11 acting in endocardium to enhance endocardial-mesenchymal transformation.
Noonan syndrome (NS), the most common single-gene cause of congenital heart disease, is an autosomal dominant disorder that also features proportionate short stature, facial abnormalities, and an increased risk of myeloproliferative disease. Germline-activating mutations in PTPN11, which encodes the protein tyrosine phosphatase SHP2, cause about half of NS cases; other causative alleles include...
متن کامل